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1 .  
Abstract * : 

Rainfall rate estimates fiom space-borne k&ents are generally accepted as reliable by 

a majority of the atmospheric science commu&y. One-of , .  the Tropical Rainfall Measuring 

Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations 

fiom the TRMM Microwave Imager (m. Part I of this study describes improvements in the 

TMI algorithm that are required to introduce cloud latent heating and drying as additional 

algorithm products. Here, estimates of surface rain rate, convective proportion, and latent 

heating are evaluated using independent ground-based estimates and satellite products. 

Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the 

improved TMI algorithm are well correlated with independent radar estimates (r - 0.88 over the 

Tropics), but bias reduction is the most significant improvement over forerunning algorithms. 

The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that 

support the improved algorithm, and the more consistent and specific convectivekratifonn rain 

separation method utilized. The bias of monthly, 2.5°-resolution estimates is similarly reduced, 

with comparable correlations to radar estimates. Although the amount of independent latent . 

heating data are limited, TMI estimated latent heating profiles compare favorably with 

instantaneous estimates based upon dual-Doppler radar observations, and time series of surface 

rain rate and heating profiles are generally consistent with those derived from rawinsonde 

analyses. Still, some biases in profile shape are evidcni, and these a a y  be resolved with (a) 

additional contextual information brought to the estimation problem, andor (b) physically- 

consistent and representative databases supporting the algorithm. 

A model of the random error in instantaneous, 0.5"-resolution rain rate estimates appears 

to be consistent with the levels of error determined ii-om TMI comparisons to collocated radar. 

Error model modifications for non-raining situations will be required, however. Sampling error 

appears to represent only a fraction of the total error in monthly, 2S0-resolution TMI estimates; 

the remaining error is attributed to physical inconsistency or non-representativeness of cloud- 

resolving model simulated profiles supporting the algorithm. 
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1. Introduction , 

In Part i (Olson .et al: 2004), ’& improved method for inferring precipitation and 

atmospheric latent Beating profiles from satellite ‘passive microwave radiometer measurements 

was described, and randomerrors due to algorithm and sampling deficiencies were estimated. 

This method represents the current (VekGm 6, or V6) Tropical Rainfall Measuring Mission 

(TRMM) facility algorithm applied to-passive microwave observations fiom the TRMM 

Microwave Imager, or M. TRMNI is the first joint satellite project between the United States 

and Japan dedicated to the measurement of tropical rainfall and latent heating distributions 

(Simpson et al., 1988). Previous TMI algorithms produced estimates of surface rain rates and 

vertical precipitation profiles but not latent heating profiles. The evolution and improvement of 

the official TRMM TMI algorithms through Version 5 (V5)  are documented in Kurnmerow et al. 

(200 1). 

In addition to the TMI, the TRhQM observatory includes the first spaceborne weather 

radar, or Precipitation Radar (PR). The TRMM standard precipitation algorithm for applications 

to the PR was developed by Iguchi et al. (2000). Since the PR provides much higher resolution 

depictions of both vertical and horizontal precipitation structures than the TMI, this alternative 

algorithm should in principle provide more accurate estimates of precipitation. However, 

contamination of the PR observations by surface backscatter at off-nadir viewing angles restricts 

the EX’S useful swath width to approximately 215 h foi a nominal PUT% satellite altitxxle of 

350 km. By contrast, the TMI and most current satellite microwave imagers are conically 

scanning, which allows for uniform-resolution observations over swaths of several hundreds. of 

kilometers width for nominal satellite altitudes. Because of their limited swath width and 

additional weight and power consumption, spaceborne radars assume the role of “calibrators” of 

passive microtbrave- precipitation estidates, while the passive radiometers, already a component 

of several polar-orbiting observatories, provide more extensive sampling of precipitation events 

over the globe. L .  

In addition, passive microwave estimates of precipitation and latent heating can be 

evaluated using independent estimates derived from ground-based radars (including single- and 

dual-Doppler configurations) and rawinsonde observation networks. As part of TRMM, radar 

data are collected continuously at four ground validation sites in the Tropics. These data have 
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been supplemented by dual-Doppler radar and rawinsonde observations from field campaigns in 

the South China Sea, western Brazil, and the vicinity of Kwajalein Atoll. 

. 

in the present study, “6 and V S  TMI estimated rain rates and latent heatmg profiles are 

compared to coincident estimates fkom both ground-based systems and PR-based algorithms as a 

test of consistency. It is not possible to “validate” the TMI estimates in a strict sense, since 

validation requires comparison to independent measurements that have much less uncertainty 

than the TMI estimates, and this is not always the case. On the other hand, the independent 

measurements do provide a useful reference and help identify possible biases and general levels 

of uncertainty associated with the TMI estimates. Also, the independent data are used to 

illustrate the changes in rain rate estimates derived from the current V6 TMI method relative to 

the previous technique from which it is a descended (V5). Since latent heating was not a 

standard product of the V5 satellite algorithm or any previous version, current latent heating 

estimates are not compared to any previous estimates. 

In section 2, the various data sources and products utilized in this study are described in. 

detail. TMI surface rain rate estimates are compared to surface radar and PR estimates at 

different time and space resolutions in Section 3. Section 4 is devoted to comparisons of V6 

TMI rain rate and latent heating profile estimates to independent estimates from ground-based 

systems, and a summary and discussion are provided in Section 5. 

2. Datasets 

The focus of the current study is on the estimation of three parameters fiom satellite data: 

the surface rainfall rate, the convective proportion of rain, and the vertical profile of latent 

heating, defined here as the apparent heat source (total heating) less the radiative heating rate, or 

Ql - QR; see Yanai et al. 1973. The quantity el- QR thus emphasizes the heating due to phase 

changes of water substance in precipitating clouds. The surface rainfall rate and the convective 

proportion.of rain are standard outputs of both the V5 and V6 TMI algorithms. The V5 TMI 

algerithm is described in Kummerow et al. (2001), while the modifications that resulted in V6 

are described in Part I (Olson et al. 2004) of the current study. Attempts to derive the latent 

heating profile based upon the V5 algorithm led to vertical heating structures that were not 

consistent with long-term climatologies based upon rawinsonde budget analyses (Tao et al. 
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2001). As explained in Part I, key improvements in the classification of convective and 

stratiform precipitation regions and the constraint on total rain area within the TMI footprint are 

expected to result in more realistic latent heating estimates from the V6 algonthm. Therefore, 

the vertical latent heating profile is provided as standard output fiom the V6 algorithm. 

The sampling resolution of the TMI is about 14 km along-track and 5 h cross-track, and 

the spatial resohtion of each measurement varies with channel frequency from about 48 km at 

10.7 GHz to 6 km at 85.5 GHz. The V6 TMI precipitation products are designed to have an 

intermediate spatial resolution of 14 km x 14 km (see Part I), while V5 products have 

comparable resolution. 

In order to demonstrate the performance of the TMI algorithm, precipitation products 

from V5 and V6 are compared to independent rain estimates at different time and space scales. 

The traditional “ground truth” for surface rain rates is derived from ground-validation (GV) 

radar, a key element in he algorithm evaluation process. There are four TRMM GV field sites 

serviced by the TRMM validation project; however, the Kwajalein Atoll site was specifically 

designed to provide data characteristic of a tropical oceanic environment. A map of the 

Kwajalein -field site is shown in Fig. 1. Standard Version 3 TRMM GV output products are 

derived from each radar volume out to a range of 150 km; surface rain rate and 

convective/stratifonn classification are interpolated to a 2 km x 2 km resolution horizontal grid. 

The radar sampling interval is 10 minutes, and so the radar map closest to the TRMM satellite 

overpass time is GtilizeO for intercoqmisons. IE the cwrent study, d l  sipi5cant rain evmts 

observed coincidentally by the TMI and the Kwajalein radar during 1998 are collected, yielding 

the 22 events depicted in Fig. 2. The event on March 25 did not produce any rain inside the 

TRMM swath, and so it is not included in the comparisons. The Kwajalein GV radar rain rates 

are adjusted using coincident raingage measurements to remove the radar-raingage bias over 

monthly periods; see W O E  et al. (2004). Due to the limited number of functioning raingages in 

particular months, however, the bulk adjustment of GV radar Z-R relations (convective and 

stratiform) was based upon coincident radar and raingage data fiom multiple months. Over 1998 

as a whole, the (unadjusted) radar to raingage ratio based upon all coincident radar-raingage 

pairs was 1.24 with a correlation of 0.98. 

Since the TRMM GV sites yield rain rate and convective proportion information at only a 

limited number of locations in the Tropics, products derived from the spaceborne PR are also 
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I considered in the current investigation. Surface rain rate at each PR footprint location is a 

standard TRMM product derived using the algorithm of Iguchi et al. (2000>. The classification 

of each PR footprmt as convective/stratifodundetennined is also a standard product, based 

upon the method of Awaka et al. (1998). Version 5 of these products is used for 
I 

intercomparisons. The scan geometry and sampling rate of the PR lead to footprints spaced 

approximately 4.3 km cross- and down-track, over a 215 km wide swath centered within the 760 

km wide TMI swath; therefore, lhtiI and PR observations over the PR swath are nearly 

coincident in space and time, aside fiom the 57 s offset in observation time caused by the 

difference in scan geometries of the sensors. The PR measurements themselves have an intrinsic 

spatial resolution of about 4.3 km, due to the diffraction limitation of the instrument. In a 

comparison of PR near-surface rain rates and collocated WSR-88D radar at Melbourne, Florida 

(one of the TRMM ground validation radars), Liao et al. (2001) noted a high bias of 3% and a 

standard error of 44% in PR rain estimates on an overpass-by-overpass basis, with a correlation 

between PR and ground validation rain estimates of 0.95, The relatively large standard error 

percentage results from the large population of light rains that contribute to the mean rain rate, 

and so this statistic does not necessarily reflect the good consistency between PR and ground 

radar. Schumacher and Houze (2000) also noted good agreement between PR and ground 

validation radar estimates of rain rates at Kwajalein. They reported biases of 6% or less, 

depending on the Z-R relations applied to the radar data, and a PR-ground validation radar rain 

rate correlation of 0.96. In both the &fdbmiie md K-mjaleia rad= comparisms, the mean 

convective and stratiform rain rates fiom PR agreed with the ground radar amounts to within 

21%. 

I 

I 

I 
I 

l 

Following the discussion of estimated TMI product uncertainties in Part I, 

intercomparisons of TMI precipitation products and independent estimates are carried out at time 

and space resolutions that reflect potential applications of the products. Assimilation of surface 

rain rate or latent heating profiles into global climate or numerical weather prediction model 

analyses/forecasts requires instantaneous products at half-degree (or comparable) spatial 

resolution; see Krishnamurti et al. (2001); Hou et al. (2004). Consequently, instantaneous 

rainfall rates and convective proportion estimates at 0.5' resolution are compared in this study. 

Since the spatial sampling of TMI, GV radar, and PR are all relatively fine over 0.5' x 0.5' 

, 
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1atitudeAongitude grid boxes, instantaneous precipitation estimates fiom each of the three sensors 

are simply averaged to obtain half-degreb produofs for the htercomparkons. 

Aiternatively, climate o r  large-scale analysis studies may only require lower-resoluti.on 

estimates. When TMI precipitation estimates are averaged over the period of one month in 2.5' 

x 2.5" latitude/longitude grid boxes, the random error due to the limited information content of 

the radiometer1 data becomes fairly negligible, although sampling error can be significant; see 

Part 1. As observations from a greateri number of spaceborne microwave radiometers in the 

Global Precipitation Measurement (GPM) mission "constellation" become available, sampling 

error will also be greatly reduced in monthly estimates, revealing the space and time variations 

that hopefully will define trends in large-scale precipitation and latent heating. Therefore, as a 

test of a proxy climate product, monthly-mean 2.5' TMI estimates are compared to independent 

estimates fiom the PR. These products are created by averaging all instantaneous precipitation 

estimates falling in a partkular 2.5" x 2.5" 1atitudeAongitude box in a specified month. 

At either instantaneous 0.5" or monthly 2.5" resolution, precipitation products are not 

included in statistics if both the TMI and the independent product are non-raining pairs. Since, at 

a given location, rain typically occurs less than about 10% of the time, eliminating non-raining 

pairs in the statistics emphasizes the algorithm's ability to quantify precipitation where it is 

raining. When instantaneous imagery is compared, either GV radar or PR estimates are averaged 

within a 196 km2 (14 lan x 14 km) circular area centered on a given Th4I observation to 

approximate the resolu~on of ihe T M  ktm+meous, fGopr&-scale estimates. 

Since there are no direct latent heating-measurements, two alternative approaches are 

used to evaluate TMI latent heating rate estimates. The first method is founded on the 

assumption that the d o e a n t  contribution to diabatic heating comes fiom the vertical advection 

of dry static energy; e.g. Cifelli and Rutledge (1998). In this approximation, 

where w is the vertical velacity,j is the dry static energy (cpT + gz), and z is altitude. Here, cp is 

the specific heat of air at constant pressure, Tis temperature, and g is the acceleration of gravity. 

The vertical velocity can be calculated using dual-Doppler radar observations: Dual-Doppler 

analysis yields the horizontal wind speed and direction; by vertically integrating the divergence 

of the horizontal wind, one obtains the vertical velocity subject to a prescribed vertical velocity 
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at the top or bottom of the air column; see Doviak et al. (1976), Davies-Jones (1979). The dry 

static energy is calculated from sounding data coinciding with the dual-Doppler observations. 

Combining rhe dual-Doppler vertical velocities and dry static energy gradient m (1) yields a 

“dual-Doppler study” @DS) estimate of latent heating. 

During the TRMM field campaign at Kwajalein (KWAJEX; 23 July - 15 September, 

1999), an S-band radar on the Kwajalein Atoll and a C-band radar aboard the Research Vessel 

Ron H. Brown provided dual-Doppler coverage of precipitation systems over the Pacific Ocean. 

The RV Ron Brown was positioned 40 km south of the Kwajalein Atoll radar site, and this 

configuration allowed for dual-Doppler coverage within the two 80 km-diameter circular “lobes” 

for which d e  crossing mgle of radar rays was greater than 30”; see Fig. 1. Unfartunately, there 

were relatively few dual-Doppler radar observations of KWAJEX rain events that coincided with 

TRMM satellite overpasses. From KWAJEX, only five such events have been identified, and 

only two involve organized mesoscale convective systems. In spite of the difficulties in 

calculating vertical velocity fiom dual-Doppler observations and the relatively few storms 

observed during TRMM overpasses, observations of the two organized systems are analyzed 

here, and the resulting latent heating profiles are compared to estimates fiom the V6 TMI 

algorithm. The primary advantage of the dual-Doppler estimates of latent heating is that they 

provide an L‘instantaneous” sample of the heating distribution at relatively Bigh spatial resolution. 

The main source of error in the calculation of the heating rate using (1) is the error in the 

derivation of the vertical velociq. AlthGiigh the measu-zmei;t of the horizoata! wifids a d  

horizontal divergence from the dual-Doppler analysis is fairly accurate, vertical velocities are 

calculated from mass continuity by integrating the horizontal divergence vertically. In the 

current study, a variational adjustment scheme is utilized to constrain the divergence integral 

subject to boundary conditions on the vertical velocity at the surface and cloud top; see O’Brien 

(1970). Nevertheless, errors in dual-Doppler estimates of vertical velocity are generally within 

lo%, but could be up to 30% in extreme cases, based upon an earlier study involving coincident 

sailplane observations (see Doviak and Zmic, 1993). Percentage errors of comparable 

magnitudes are expected in estimates of (21 using (1). As a result, error envelopes up to 30Y’are 

shown in the DDS estimates of QI in the current study. 

Even though spatial averaging of passive microwave precipitation and latent heating 

estimates is required to conqol the random error of the estimates (Olson et al. 1999, Shige et al. 
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2004), the factthat DDS heating estimates can be matched in time with satellite estimates is an 

advantage with respect to rawinsonde-based estimates of latent heating, which have relatively 

low temporal and spatial resolution. .The rawinsonde-based estimates of latent heating utilized in 

this study are now described. 

Yang and Smith (1999% 2000) utilized rawinsonde-derived apparent heat source (el)  and 

apparent moisture sink ( Q 2 )  budget estimates from the Tropical Ocean Global Atmosphere 

Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) network to validate their 

latent heating estimates fi-om S S M  data. Results indicated the credibility of latent heating 

estimates derived fi-om SSM/I data, although there were some uncertainties at the daily time- 

scale. S S M  latent heating estimates fi-om a different algorithm were compared to a TOGA 

COARE time series of by Olson et al. (1999), with similar results. More recently, Tao et al. 

(200 1) demonstrated that several satellite-based estimates of space-time mean latent heating 

profiles were compatible with the mean rawinsonde-derived heating profiles from the TOGA 

COARE field campaign's Intensive Flux Array over the Nov. 1992 - Feb. 1993 intensive 

observing period. These studies provided evidence that rawinsonde analyses could be used to 

evaluate satellite latent heating estimates; however, since rawinsonde networks covering oceanic 

areas have relatively limited time and space sampling (2-4 launches day-', and -1 site per lo4 

h2), rawinsonde analyses are best suited for relatively large timehpace-scale comparisons. 

, 

In the present study, analyses of Ql from the Northern Enhanced Sounding Array 

@%SA) ofthe South C h a  Sea 12;lonsijim Experiment (SCSMEX) are compaed to estihates cf 

e1-Q~ from the V6 TMI algorithm. The rawinsonde sites associated with the NESA, located in 

the northern portion of the South China Sea, are depicted in Fig. 3. The rawinsonde-based 

estimates of Ql are derived fi-om the analyses of Johnson and Ciesielski (2002) for the period 15 

May - 20 June 1998 over the NESA. During the specified period, rawinsondes were launched 2- 

4 day-' at stations along the perimeter of the NESA and 4 day-' from Dongsha Island and the 

Research Vessel Shiyan #3, located near the center of the may. Outside the array, rawinsondes 

were typically launched 3-4 day-'. The rawinsonde data were interpolated to a 1" resolution grid, 

with large data gaps filled in using GEWEX Asian Monsoon Experiment (GAME) Reanalysis 

values; see Yamazaki et al. (2000) for a description of the GAME Reanalysis. Vertical motion 

was derived by integrating the horizontal divergence upward from the surface, with the 

divergence adjusted to achieve mass balancing. The analyzed temperatures, specific humidities, 

9 



and winds were used to estimate mean 121 and Q 2  profiles within the NESA at 00,06, 12, and 18 

UTC during the specified period. 

in addirion to QI and Q2, estimates of the surface rain rate over the NESA by Johnson and 

Ciesielski (2002) were derived from the moisture budget, 

L” (P - E ) ,  

where (Q2) is the vertical integral of @, L, is the latent heat of vaporization, P is the surface 

precipitation rate, and E is the surface evaporation rate. Surface evaporation over the NESA was 

obtained from the GAME Reanalysis values, adjusted by shipboard flux measurements from the 

Shiyan #3; see Johnson and Ciesielski (2002) for a description of the procedure. Given (e2) and 

E, the surface precipitation rate is derived fiom (2)- 

In order to reduce errors due to the relatively coarse temporal sampling of the NESA by 

the TMT (about 1.4 day-‘) and rawinsondes, a 3-day running mean filter is applied to the domain- 

average estimated heating profiles and &ace rain rates within the NESA from both the TMI 

and the rawinsonde analyses. Mean heating profiles and rain rates are also calculated for the 

entire 15 May - 20 June 1998 period. Sampling errors in rawinsonde-based analyses for several 

sounding arrays were estimated by Mapes et al. (2003). Errors in NESA surface rainfall rates 

from the Q 2  budget are reduced to 1.3 mm day-’, or about 30% of the long-term mean rain rate, 

using 3-day averages. Similar averaging reduces the error in the altitude of the peak Ql to 47 

hPa, or about 800 m (at 7 km altitude), while a 30-day average will result in an error of 15 Wa or 

about 250 m (at 7 km altitude) in the altitude of the peak Ql. 

3. Surface Rain Rate Intercomparisom 

a. Fooprint resolution 

Prior to the evaluation of lower-resolution products, instantaneous maps of surface rain 

rate fiom V6 and V5 “MI, as well as collocated rain estimates from Kwajalein GV radar and PR, 

are compared to illustrate changes in the TMI algorithm. Horizontal distributions of retrieved 

rain rates from V6 TMI are generally consistent with those fiom V5 for each event we identified. 

This result was expected because V5 TMI rain rates had already exhibited reasonable agreement 

with GV radar (Kummerow et al. 2001). However, V6 rain estimates are greatly improved with 
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respect to V5 in coastal areas, since a new, higher-resolution geographical database is used to . 

identifjr coastal boundaries in V6, and some footprints previously classified as coastal in V5 are 

now correctly identified as oceanic; see Part I. Using either the V5 or V6 algorithm, the TMI 

yields more ambiguous rain estimates for footprints classified as coastal, in contrast to ocean or 

land footprints, due to uncertainties in the microwave surface emissivity-of coastal regions. All 

TMI footprints in the vicinity of the Kwajalein site in V6 are classified as oceanic because of the 

extremely small land area of Kwajalein and neighboring atolls. 

The intercomparison cases shown in Fig. 4 are presented as examples of the 

improvements made to the V6 TMI algorithm. The images in the left panels correspond to the 

TRMM overpass at 17 UTC on 24 August 1998. Although the TMI observed the precipitation 

system near the Kwajalein GV site during this overpass, the system was outside the boundaries 

of the PR swath. Thus, only the GV rain map shown in the middle left panel is compared to the 

V6 and V5 TMI estimates. Note that in the proximity of Kwajalein and the Namu Atoll to the 

southeast, the V5 algorithm yields very little precipitation over ocean regions, while the V6 

algorithm and the GV radar identify intense rains up to 20 mm h-’- This discrepancy is 

exclusively due to the classification of ocean areas close to KwajaledNamu as “coastal” (mixed 

ocean-land) in the V5 algorithm, whereas the same regions are classified as “ocean” in the V6 

algorithm. Only rain rates in regions classified as “ocean” are plotted in Fig. 4. Since all 

footprints in the vicinity of Kwajalein are classified as oceanic by the V6 algorithm (even those 

footprints over the atolls themselves, dce to their very small lmd Ereas), raio htemity is 

quantified by both microwave emission fiom liquid precipitation as well as scattering. Rain 
intensity interpreted fiom microwave emissiodscattering by the V6 algorithm results in rain 

estimates generally consistent with the GV estimates. If the same regions had been classified as 

“coastal’~, then a much less reliable scattering-only algorithm would have been applied to the 

TMI data as part of V6. 

The right panels are based upon observations coinciding with the TRMM overpass at 17 

UTC on 28 October 1998. In this case most of the precipitation fell beyond the range of the 

Kwajalein GV radar, and so PR rain estimates, shown in the middle panel, are compared to V6 

(V5) TMI rain estimates in the top (bottom) panel. Since the TRMM PR has relatively high 

spatial resolution and better ability to detect light rains, the gradients of light rain along the edges 

of the rain system in the right-middle panel are considered accurate. (Note that the minimum 
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detectable surface rain rate fiom PR is roughly 0.3 mm h-', coiresponding to a minimum 

detectable signal of 18 dBZ). The pattern of rainfall derived from V6 is generally more 

consistent with the PR estimate, while the V5 rain pattern exhibits none of the gradients along 

the precipitation boundaries seen in the PR imagery. The improved rain patterns of the V6 

estimates are attributed to the expanded cloud-radiative model database supporting V6; the 

expanded database includes a better representation of isolated convection and weak precipitation 

events relative to the V5 supporting database; see Part I. 
Since different ocean/land/coast classifications are used in the V5 and V6 TML 

algorithms, in all of the plots and statistical analyses to follow only IatitudeAongitude grid boxes 

with essentially complete coverage (90% of the grid box area) by TMI, GV radar, and PR, with 

all footprints classified as ocean by the V5 TMI algorithm, are considered. The V5 classification 

is used because the focus of this study is changes in the ocean precipitatiodlatent heating 

estimation method, and the V5 ocean footprints are a subset of the V6 ocean footprints. Also, 

data pairs for which both sensors yield zero rain rates are excluded fiom the analysis in order to 

emphasize the skill of the algorithms in raining regions. 

b. Instantaneous, O S 0  x 0.5" estimates 

Displayed in Figure 5 are scatterplots of oceanic instantaneous, 0.5" x 0.5" mean surface 

rain rates at the Kwajalein site from V6 and V5 TMI versus Kwajalein GV radar and PR 

estimates, drawn from the 21 selected rain eveiits during 1998. Statistics ~f these 

intercomparisons are provided in Table 1. It may be noted fiom the plots in Fig. 5a that rain rate 

estimates fiom both V6 and V5 TMI show reasonable agreement with the GV radar and PR near 

Kwajalein, although differences between the rain estimates are still evident. The correlations 

between the TMI estimates and either GV or PR improve slightly in the progression from V5 to 

V6, and V6 estimates are less biased and have lower random error. Convective rain rate 

estimates (Fig. 5b) are less correlated with GV or PR than total rain rate estimates, due to the less 

direct inference of convective or stratiform rain type fiom the passive microwave data. It is 

expected that the GV radar or PR can provide a more detailed picture of precipitation structure 

than TMI, although fundamental differences in the definitions of convective and stratiform rain 

types from GV, PR, and TMI can also lead to differences in estimated convective/stratiform rain 

proportion. 
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Although the evaluation of TRMM products near the ground validation sites has the 

advantage of the availability of raingage-calibrated ground radar observations (Wolff et al. 

2004), the errors statistm represent only local conditions over the period of study. Because of 

the large spatio-temporal variations of precipitation, more general conclusions can be made from 

global comparative datasets. Therefore, all V6 and V5 instantaneous TMI precipitation estimates 

from July 2000 over ocean areas are compared to coincident PR estimates at 0.5’ x 0.5’ 

resolution. Presented in Fig. 6a are scatterplots of the collocated TMI and PR estimates; V6 and 

V5 TMI estimates are plotted in the left and right columns, respectively. Statistics of the 

comparisons are given in Table 2. Again, both the V6 and V5 estimates of surface rain rate are 

well correlated with PR estimates; however, the V6 estimates have less bias and lower random 

error in relation to the V5 estimates. 

Estimates of the convective rain rate are less correlated with PR and the bias and random 

error of these estimates is greater than the corresponding statistics of total rain. The less direct 

inference of convective precipitation structure from the TMI is the primary reason for the greater 

scatter of Th4I convective rain rates relative to PR. Note that the V6 convective rain estimates 

are more high-biased with respect to the PR than the V5 estimates. The greater mean departure 

of V6 convective rain estimates is mainly attributed to the revised classification of 

convective/stratifom rain areas in the V6 algorithm; see Part I. The impact of the new 

classification is removed by considering a separation of the rain data based upon the PR 

classification of conveciivelstratifom rain iiiea. Iil Fig. 55, the rain data arc reclassified as 

“primarily convective”, for which the PR convective rain proportion over each half-degree box is 

greater than 50% of the total PR rain, and “primarily stratiform”, for which the PR convective 

proportion is less than 50%. Although there is not an obvious difference between the scatterplots 

of V6 and V5 “primarily convective” data, a significant decrease in the average intensity of V6 

stratifom rains relative to V5 is evident.. 
~ The change in stratiform rainfall intensity is due to the revision of the method for 

determining convective and stratifom rain proportions in the TMI algorithm. In V5, the area 

fraction of convective precipitation within the nominal sensor footprint was used to constrain the 

selection of simulated precipitation profiles in the algorithm’s supporting database; see 

Kummerow et al. (2001). In addition, the proximity of a footprint to convection was also used as 

a constraint; therefore, even footpribts with no convective coverage might be assigned quasi- 
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convective precipitation structure if they were adjacent to footprints classified as convective. 

This “blurring” of the convective/stratiform characterization led to overestimates of rain intensity 

in stratiform regions. In V6, in addition to the convectwe area constraint, a constraint on the 

total rain area is imposed; see Part I. As a result, a better (if not specific) indicator of the relative 

proportions of convective and stratiform rain flux is supplied to the algorithm. Also, the 

constraint on the proximity to convection is removed to produce a more distinct separation of 

convective and stratifom rain regions in a given mesoscale convective system. This more 

distinct separation leads to lower-intensity stratiform rains and a lower overall bias of stratiform 

and total rain from the V6 algorithm, as indicated in Fig. 6. The discrepancy between the basic 

definitions of convective/stratiform rain areas in the V6 and PR algorithms will be the focus of a 

future study. 

Overlaid on the V6 scatterplot of Fig. 6a is a fit to the mean algorithm-derived estimate 

of error standard deviation as a function of rain rate; see Part I. 

aF = 0.930 h(R + 1 mm h-’) (3) 

Here, aE and have units of ~zllll h-I. The expression (3) represents only that portion of the 

algorithm random error due to the limited information content of the radiometer data. It is 

apparent that the assumption of zero rain rate error in footprints classified as non-raining is a 

deficiency of the model, since significant errors are seen near the origin of the scatterplot. The 

relative contributions of errors to due uncertainties in PR estimates, spatial sampling mismatches, 

and errors in cloud-radiative modeling have yet to be determined, but the mean algorithm 

. 

estimate of error given by (3), modified by errors in non-raining footprints, may be useful for 

data assimilation applications. A more specific estimate of the error in each half-degree rain 

estimate is given by the full model IEq. (19) in Part I], but this requires an aggregation of the 

errors at footprint-scale. 

Variations of precipitation system structure and frequency of occurrence over the globe 

should lead to inhomogeneous distributions of error in rain rate estimates from spaceborne 

sensors, due to the limited information these sensors provide with regard to the physical 

characteristics of observed precipitation system. Berg and Kummerow (2002) examined the 

systematic differences in satellite-based rain rate estimates in the East and West Pacific and 

linked these to differences in precipitation structure. Yang and Smith (2004) demonstrated that 

the degree of consistency between different TRMM rain products varies time and space. Here, 
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V6 and V5 TMI rain rate estimates over the tropical oceans h m  July 2000 are broken down by 

region to uncover possible variations in error statistics. 

Presented in Fig. 7 are scatterplots of TMI and PR rain rate estimates at 0.5" resolution; 

V6 TMI estimates are plotted in the left-hand column, while V5 TMI estimates are plotted in the 

right-hand column. Plotted in each V6-V5 pair of panels in a gwen row are data from one of five 

selected tropical 10"x1Oo areas, including areas in the West Pacific (WP), East Pacific (EP), 

Atlantic Ocean (AO), Indian Ocean fIO),'and South China Sea (SCS). The boundaries of these 

areas are given in Table 3. Statistics ;of the regional comparisons are presented in Fig. 8. 

It may be noted from the figures that the typical high biases of the V5 TMI estimates are 

generally reduced in the V6 estimates, and random errors decrease. This result holds 

independent of the specified region, even though the correlations of the estimates with collocated 

PR rain rates are nearly unchanged. The implication of these regional tests is that the 

modifications of the TMI algorithm in the progression from V5 to V6 corrected basic 

deficiencies that previously affected algorithm performance throughout the Tropics; however, 

based upon d e  limited samples of regional data utilized here, no general conclusions can be 

made. 

c. Monthly, 2 . 5 ' ~  2.5" estimates 

Intercomparisons of monthly-mean, 2.5" resolution V6 and V5 TMI and PR rain rate 

estimates over ocean from July 2000 iiie pieseated Figure 9. Typical!y, greater 2veraging of 

passive microwave rain estimates has the effect of reducing the random retrieval error relative to 

the variance of the rain data, resulting in higher correlations of rain estimates with respect to 

independent data. Here, however, the correlations of both V6 and V5 rain estimates with respect 

to the PR are slightly less than the correlations of the instantaneous, 0.5' averages with respect to 

PR, shown previously; see Table 2. The likely explanation for the weaker correlations is that the 

suppression of random retrieval errors (due to the limited information content of the radiometer 

data) by averaging is offset by regionally-dependent systematic errors in algorithm estimates. 

The regionally-dependent systematic errors are relatively small, and only emerge in space-time 

averages over relatively lar areas and long periods. These errors could include errors in the 

supporting cloud-radiative model simulations of the TMI supporting database or unrepresentative 

proportions of various precipitation system types in the database. Errors in the PR rain estimates 

. E  

< $  * 
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could also contribute to the overall scatter, however. Although the correlations of the monthly, 

2.5' V6 and V5 estimates to PR estimates are the same, V6 estimates exhibit less bias with 

respect to YK. 
Since the samples plotted in Fig. 9 are derived from only those time-coincident 

observations for which both TMI and PR observed most of a given 2.5 degree grid box, the 

primary contribution to differences in the monthly mean rain rates comes from differences in 

estimated rain intensities rather than differences in sampling. However, to provide some 

perspective on the relative magnitudes of rain estimation error and sampling error, an estimate of 

the mean TMI temporal sampling error is overlaid on the V6 plot. Following Bell and Kundu 

(2000), the percentage sampling error given by (23) of Part I is represented as a function of the 

monthly-mean rain rate at 2.5" resolution using the power-law fit, 

From Fig. 9 it may be noted that qualititively, the mean TMI sampling error is only a fraction of 

the combined TMI and PR rain estimation error. 
- 

4. Latent Heating Comparison Results 

a. Comparisons to dual-Doppler study estimates 

The evaluation of latent heating estimates fi-om satellite observations is always a difficult 

challenge, since there exist no independent, direct estimates of latent heating. Yang and Smith 

(1999b) approached this problem by analyzing the evolution of 3-D latent heating structures 

fi-om SSM/I observations for well-known circulations associated with the El Niiio and the Asian 

Monsoon to qualitatively determine the reliability of their latent heating estimates. Olson et al. 

(1999) compared time series of SSM-based estimates of latent heating to rawinsonde-based 

analyses of Ql over the Intensive Flux h a y  of TOGA COARE. The only intercomparison of 

latent heating profiles based upon TRMM sensor observations indicated that there was rough 

agreement in the horizontal and vertical distributions of heating derived from different 

participating algorithms (Tao et al. 2001); however, some discrepancies in the heating 

distributions were evident. Without careful comparisons to independent heating estimates at 

similar time and space scales, it is hard to ascertain the relative accuracy of the various 

algorithms. 
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As noted in section 2, heating estimated from the DDS method is only am approximation 

to the total diabatic heating; however, in convectively active regions the vertical structure of the 

heating from the DDS analysis should be similar to that of Q,-QR. Unfortunately, there are very 

few DDS cases from the KWAJEX field campaign that can be used for heating intercomparison 

studies. Figure 10 illustrates comparisons of the vertical heating structures from V6 TMI and 

DDS for two selected cases fiom the Kwajalein site. Shown in Fig 10a are fields coinciding with 

the TMI overpass at approximately 10 UTC on 15 August 1999, while the fields shown in Fig. 

lob correspond to the overpass at 19 UTC on 29 July 1999. 

The precipitation shown in the dual-Doppler radar lobes in Fig. 10a was produced by an 

organized mesoscale convective system that began as a westward-propagating convective line. 

The retrieved mean heating profile from TMI shows deep positive heating from 1 to 17 km, with 

a maximum near 6 km. Evaporative cooling is seen near the surface. Heating estimates from the 

DDS are limited in altitude by the height of the radar-detectable echo, but generally the more 

intense and extensive the rain system is, the deeper the DDS heating analysis. In this case, the 

mean DDS heating is limited to altitudes below 15 km. The DDS mean heating profile exhibits 

positive heating from the surface to 15 km, with a maximum near 7 km. The maximum DDS 

heating magnitude is greater than that derived from the TMI. Although the vertical distributions 

of heating from TMI and DDS are consistent from the surface to the level of maximum heating, 

the TMI heating in the upper troposphere generally exceeds the DDS heating. 

The disturbance that produced the rain pattern shown in Fig. 103 was imbeddcd m a n  :- 

extensive east-west oriented band of precipitation that approached Kwajalein from the south. 

The overall depth of the precipitation from this system was less than that of the preceding case, 

resulting in a shallower, less intense heating maximum derived from TMI. Similar to TMI, 

significant heating from the DDS is confined to altitudes less than 10 km, although the peak 

DDS heating is greater than that of the TMI heating profile. The DDS heating maximum is 

sharper than the TMI maximum, but both analyses reveal maximum heating centered at 5-6 km 
altitude. As in the preceding case, the TMI algorithm yields weak heating in the upper 

troposphere that is not reflected in the DDS analysis. 

. There could be several reasons for the discrepancies between the mean TMI and DDS 

heating profiles. First, in applications to relatively intense precipitation systems, the TMI 

algorithm tends to bias heating estimates towards the mean of heating profiles stored in the 
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algorithm's supporting database, and this could explain the broad, but relatively weak, heating 

profiles produced by the algorithm; see Part I, section 4. On the other hand, there is relatively 

large uncertainty in estimating the vertical velocity from the DDS method. It may be noted from 

Fig. 10 that the magnitudes of heating profiles fiom TMI are generally located within the 30% 

error envelopes of the DDS heating profiles. High biases of the TMI profiles outside the DDS 

error envelopes occur in the upper troposphere, however. \ 

In spite of the noted discrepancies, these comparisons at the Kwajalein site illustrate the 

V6 TMI algorithm's potential, at least in the lower to mid-troposphere, for capturing variations 

of latent heating vertical structure. 

b. Comparisons to rawinsonde-based estimates 

Although comparisons of instantaneous latent heating estimates from TMI and DDS 

analyses are optimal fiom a sampling perspective, the limited number of collocated observations 

makes it impossible to draw any general conclusions. The SCSMEX NESA rawinsonde analyses 

described in section 2 are based upon limited temporal sampling (up to 4 day-'), but they provide 

a continuous record of d e  evolution of diabatic heating over the SCSMEX intensive observing 

period. Here, 3-day running mean estimates of rawinsonde Ql and surface rain rate (fiom the Q2 

budget; see section 2) are compared to similarly averaged TMI estimates (-1.4 day-' sampling) 

for the period beginning with the monsoon onset in the South China Sea on 15 May, through 20 

June i998. 

The surface rain rate time series from TMI and the rawinsonde analyses are shown in the 

top panel of Fig. 11. This comparison is a good indicator of the relative sampling of 

precipitation systems by the two methods over the prescribed period. Note that in spite of the 

rather limited temporal sampling by TMI and the rawinsondes, the 3-day mean surface rainfall 

rates are in fairly good agreement. The agrement between the TMI and rawinsonde analyses 

may be attributed, in part, to the large-scale forcing of precipitation during the observing period. 

For example, Johnson et al. (2004) noted that in the eleven-day period following monsoon onset 

(15-25 May), precipitation occurred nearly continuously within the range of the Bureau of 

Meteorology Research Centre C-POL radar located at Dongsha Island. Precipitation that is more 

strongly correlated in time tends to reduce the effects of intermittent sampling. Nevertheless, 

there are periods during which TMI rain rates are biased relative to the rawinsonde estimates. 
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For example, TMI estimates are high-biased in the 3-4 day periods centered on 15 and 24 May 

and 4 June, and are low biased on 6-7 June. 

A time series of from TMI is shown in the second panel of Fig. 11. To make a 

more consistent comparison to the rawinsonde heating estimates, however, a rough correction for 

radiative heating/cooling is added to the TMI Ql - QR estimates to create the time series of TMI 

Ql, shown in the third panel of Fig. 1 1. To make the correction, the net radiative heatingkooling 

profiles of Dopplick (1979) at 20 "N latitude (March-May and June-August average; from his 

Figs. 6 and 7) are used to represent the mean radiative heating/cooling rate in the NESA. The 

TMI Q1 estimate may be more directly compared to Ql from the SCSMEX NESA rawinsonde 

analyses shown in the fourth panel of Fig. 1 1. 

First, note that the primary differences between the TMI and rawinsondeel are 

correlated with differences in the estimates of surface rain rate. For example, the high bias of 

TMI Ql on 15 and 24 May, and the low bias of Ql on 7 June, are associated with similar biases 

in TMT surface rain rates at these times. Given that vertically-integrated latent heating is 

approximately equal to L, P, it is not surprising that biases in heating and surface rain rate are 

correlated. These biases may be attributed to the low temporal resolution of the TMI estimates- 

on average the frequency of TMI observation of the NESA was only -1.4 day-', while the 

sounding fiequency was -3-4 day-'. 

In spite of differences in temporal sampling by the TMI and rawinsondes, the 

correspondence of the TMI and rawinsonde Ql time series is reasonable. Heztizg maxima cccm 

at about the same times and with similar magnitudes. Also, the transition fiom low-level heating 

starting 28 May to a single mid-level maximum on 4 June is captured by the TMI and 

rawinsondes. One notable difference in the time series occurs after 11 June, when upper level 

heating (altitudes greater than 12 km) is seen in the rawinsonde time series but not in the TMI 

series. Neither time series indicates significant precipitation during this period, and although the 

rawinsonde analysis suggests radiative heating of cirrus cloud, uncertainties in rawinsonde 

analyses are also greatest at high altitudes. Proper interpretation of the upper-tropospheric 

heating during this period will require greater scrutiny. 

The mean TMI Q&, Ql, and rawinsonde QI profiles for the 15 May - 20 June 1998 

period are presented in Fig. 12. After correcting for the effects of radiative heating, the TMI 

heating profile shows reasonable consistency with the rawinsonde profile. The main 
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discrepancies are the excessive cooling in the TMI heating profile at the surface and below the 

melting level (-5 km). The cooling anomalies in the TMI profile could be explained by biases in 

the cloud-resolving model database: recent tests by S. Braun (personal communication) indicate 

high biases in the precipitation water contents produced by cloud resolving model simulations 

using standard bulk microphysics schemes. These biases would lead to a tendency for the V6 

algorithm to select stratiform precipitation and heating vertical profiles over convective profiles 

from the algorithm’s supporting database. A “stratiform bias” in estimated heating profiles 

would lead to stronger evaporative cooling at low levels and a deficiency of heating in the low- 

to mid-troposphere. Investigations are underway to identify the causes of high biases in 

precipitation water contents produced by current cloud-resolving model simulations. 

5. Summary and Discussion 

The objective of this study is to provide an initial evaluation of rain rate and latent 

heating estimates based upon an improved passive microwave radiometer algorithm (Version 6 

or V6), applied to TRMM Microwave Imager (TMI) radiance observations over ocean 

backgrounds. The formulation of the algorithm and improvements, along with estimates of 

random errors, are described in Part I of the study. The V6 TMI estimates are compared to 

independent, collocated estimates from raingage-calibrated radar at the Kwajalein Atoll ground 

validation sire, as well as estimates from coincident spaceborne radar m d  a foore~~aning 

radiometer algorithm applied to TMI data (Version 5,  or V5). Latent heating profiles from V6 

TMI are compared to estimates based upon dual-Doppler observations at Kwajalein that are 

combined with thermodynamic profiles to obtain profiles of the vertical advection of dry static 

energy, a proxy for total diabatic heating. In addition, V6 TMI surface rain rate and latent 

heating time series are compared to time series derived fiom rawinsonde analyses of heat and 

moisture budgets over the Northern Enhanced Sounding Array of the South China Sea Monsoon 

. Experiment. 

In general, V6 TMI estimates of surface rain rate are consistent with estimates from 

ground-based or spaceborne radar, both in terms of instantaneous structure and quantitative 

precipitation amounts. The correlation of instantaneous, 0.5”-resolution V6 TMJ estimates with 

respect to radar-based estimates does not change appreciably compared to V5; however, the high 
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bias previously-noted in V5 estimates is significantly reduced. The overall reduced bias is 

attributed to the expanded cloud-resolving model database supporting the V6 algorithm, as well 

as the more consistent convectivehon-convective rain separation procedure, which together 

reduce the previous high bias in estimated stratiform rains. The global reduction of bias in V6 

TMI {relative to V5) estimates appears to hold regionally as well, but to varying degrees. High 

biases in monthly, 2S0-resolution V6 TMI surface rain rate estimates are also reduced relative to 

V5. The minimixation of bias isi satellite rain estimates is critical for current data assimilation 

and climate analysis applications. 

The convective contribution to rain rate is generally more difficult to estimate than total 

rain rate, owing to ambiguities in the separation of convective and stratiform rains based upon 

radiance spatial structures and polarization signatures in the TMI data. Even the evaluation of 

TMI algorithm estimates of convective rain rate is difficult, given differences in the way 

convective and stratiform rains are defined in the algorithm relative to ground-based or 

spacebome radar observations. The apparent reduction of the stratiform high bias in the V6 TMI 

estimates, previously noted, suggests that the current convectivehon-convective rain separation 

is superior to the separation method applied in V5. Independent confirmation of this result will 

require agreement on the definitions of convective and stratiform rain in TMI estimates and 

independent observations - 
Although only limited comparisons of V6 TMI latent heating estimates to independent 

estimates are made iii studj, &e agieeme;;t betwee2 these estimates is reascn?iSIe, &:en the 

modest information content of the TMI data, differences in sampling between TMI and the 

independent measurement systems, and the general uncertainty in the independent estimates of 

heating. Comparisons of V6 TMI heating.profiles to dual-Doppler profiles indicate that the 

altitude of maximum heating is tracked by the TMI estimates, although the detailed structure of 

the dual-Doppler profiles is not reproduced. The magnitude and altitude of the heating 

maximum in the mean SCSMEX NESA rawinsonde-derived profile is also captured in the TMI- 

estimated profile. There are notable biases in the V6 TMI heating estimates, however, including 

excessive cooling near the surfixe and just below the freezing level. These biases are likely the 

result of biases in the precipitation water contents of cloud-resolving model simulations that 

support the V6 TMI algorithm. 
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The potential for improvement of the V6 passive microwave radiometer algorithm 

depends mainly on what can be done to reduce biases in the precipitatiodlatent heating 

estimates. Bringing additional information into the estimation problem is one approach for 

reducing biases, but much of the microwave radiance intensity and spatial structure donnation 

has already been exploited. Classification of storm type using the microwave observations and 

characterization of the storm environment from independent observations or model-based 

analyses could lead to more specific precipitatiodlatent heating estimates and reduced biases. 

Latent heating estimation should benefit most from storm type/environment information, since 

the heating distribution is strongly linked to storm kmematics. 

Since V6 estimates are sensitive to the type and distribution of cloud-resolving model 

simulated profiles in the algorithm's supporting database, there is great potential for reducing 

algorithm biases by creating supporting databases that are more consistent with naturally- 

occurring profiles at the tirne/location where the algorithm is applied; see Shin and Kummerow 

(2003). A database constructed from hydrometeor profiles retrieved by applying a combined 

radar-radiometer algorithm to PR-TMI data is currently under development by the authors. This 

type of database has the advantage that each hydrometeor profile is unbiased with respect to both 

PR and TMI observations and is independent of cloud-resolving model assumptions (although 

some limited assumptions concerning vertical particle-size distributions are made). In addition, 

the natural distribution of profiles appropriate for a specific radiometer algorithm application can 

be derived by repeated application of the combined PR-TMX d g o r i t h  and S O X - ~ ~ O ~  of the 

resulting profiles by storm type, storm environment, or other contextual conditions. Cloud 

model simulations would still be required to associate an appropriate vertical latent heating 

profile to each PR-TMI hydrometeor profile estimate. 

The characterization of random errors in 0.5' x 0.5' V6 TMI estimates using the error 

model developed in Part I appears to be consistent with the magnitudes of errors determined 

from comparisons of TMI and PR rain rate estimates. This model should be modified to account 

for errors in regions where the TMI algorithm identifies no rain, however. Another source of 

uncertainty is the potential error in simulated cloud-resolving model profiles that support the 

algorithm. If the algorithm's database is constructed from profiles derived from PR-TMI 

combined estimates, as previously discussed, then this error should be minimized. However, 

there will still be some uncertainty that a given profile in the database occurs with a prescribed 
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frequency, and tlus uncertainty can only be resolved by long-term statistical evaluation of how 

that profile frequency fluctuates for specified contextual conditions. 

Sampling error appears to explain only a fraction of the total random error in monthly, 

2.5°-resolution TMI estimates; the remaining error is attributed to physical inconsistency or non- 

representativeness of cloud-resolving model simulated profiles supporting the algorithm. 

Overall, results of the evaluations of TMl surface rainfall rate and latent heating based 

upon independent measurements, along with results &om Part I of this study, demonstrate that 

significant improvements have been made in V6 surface rain rate estimates relative to those fiom 

V5, and that rain rate and latent heating estimates from V6 have value for data assimilation and 

large-scale analysis applications. 
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Err. Std 

Correl. 

28 

0.71 0.78 0.73 0.30 0.32 0.36 

0.83 0.80 0.75 0.84 0.79 0.72 



Table 2. Comparison of instantaneous, 0.5' x 0.5" precipitation products over ocean during July 
2000. V6 and V5 are the statistics of the TMI surface rain rate estimates from the V6 and V5 
algorithms, respectively. C O W  are the statistics of the V6 TMI estimates of convective rain 
rate. 

Err. Std. 

Correl. 

I TMI vs. PR I 

0.44 0.50 0.58 

0.88 0.89 0.75 

Sample . 258558 258558 119201 ~l 
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Table 3. Boundaries of 10" x 10' domains 

8. 

West Pacific (WP) 

East Pacific (EP) 

Atlantic Ocean (AO) 

selected for regional analyses presented in Figs. 7 and 

5 O S - 5  "N/ 150 "E- 160 'E 

0 O -  10 O N /  105 OW-95 W 
0 O- 10 W/40 OW-30 W ' 

Region I Latitude / Longitude Domain I I 

Indian Ocean (IO) 5 O S  - 5 DN/ 80 OE-90 "E 

South China Sea(SCS) I 10 "N-20 O N /  110 "E-120 'E 1 
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Figure Captions: 

Fig. 1. Map of the Kwajalein Atoll and vicinity, showing the locations of radars on Kwajalein 
and the Research Vessel Ron H. Brown: the domain of rain observations provided the Kw+zlein 
radar, and the dual-Doppler coverage provided by the two radars. This was the configuration of 
radars d&ng the KWAJEX field campaign. . 

Fig. 2. The sequence of all rain events in 1998 observed coincidentally by-ground validation 
radar at Kwajalein, and by TMI and PR on the-llRMM satellite. The ground validation rain maps 
shown are identified by the radar volume scan. date (yymmdd) and time (hhmmss). Distances 
are relative to the radar location in kilonieters. 

Fig. 3. Map of the northern South China Sea, showing the polygonal domain of the Northern 
Enhanced Sounding Array (NESA). Rawinsonde launch sites are located at the vertices of the 
polygon and on Dongsha Island and the Research Vessel Shiyan #3 in the interior of the 
polygon. The NESA was a domain of intensive observations during SCSMEX. 

Fig. 4. Comparisons of instantaneous surface rain rates (over ocean) near Kwajalein Atoll fiom 
matched GV radar, PR, and at TMI product resolution (14 km x 14 km). In the left column 
are surface rain rate estimates fiom V6 TMI, the Kwajalein radar, and V5 TMZ at approximately 
17 UTC on 24 August 1998. In the right column are rain rate estimates fiom V6 TMI, PR, and 
V5 TMI at approximately 17 UTC on 28 October 1998. 

Fig. 5. Scatterplots of instantaneous, 0.5" x 0.5" average (a) total surface rain rates and (b) 
convective rain rates &om V6 TMI (top panels) and V5 TMI (bottom panels) versus Kwajalein 
radar and PR, based upon 21 selected TRMM overpasses of Kwajalein in 1998. 

Fig. 6. (a) Scatterplots of instantaneous, 0.5" x 0.5" average total surface &in rates (top panels) 
and convective rain rates (bottom panels) from V6 TMI (left column) and V5 TMI (right 
c o l i i )  versus P R  (t;) Scatterplots of *kstm+meolas, 0.5" x 0.5" zverage total surface rain rztes 
for which the PR convective fiaction is greater than 50% (top panels) and less than 50% (bottom 
panels) fkom V6 TMI (left column) and V5 TMI (right column) versus P R  Plots are based upon 
all collocated observations over ocean from July 2000. Overlaid on the V6 TMI plot of total 
surface rain rates in (a) are bounds of the estimated mean error (dashed lines; see text for 
description). 

Fig. 7. Scatterplots of instantaneous, 0.5" x 0.5" average surface rain rates from V6 TMI (left 
column) agd V5 TMI (right column) versus for five selected 10°xlOo tropical domains over the 
Western Pacific Ocean, Eastern Pacific Ocean, Atlantic Ocean, Indian Ocean, and South China 
Sea, respectively. The tropical domains are defined in Table 3. 

Fig. 8. Bivariate statistics for the intercomparison of instantaneous, 0.5" x 0.5" average surface 
rain rates from V6 TMI (left panel) and V5 TMI (right panel) versus PR for the five selected 
tropical oceanic domains defined in Table 3. Abscissa indices 1,2,3,4,  and 5 correspond to the 
Western Pacific Ocean, Eastern Pacific Ocean, Atlantic Ocean, Indian Ocean, and South China 
Sea, respectively. Plotted are the TMI/PR bias ratio (solid line), correlation coefficient (dashed 
line), and error standard deviation (dotted line). 
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. .  

Fig. 9. Plots of monthly, 2.5" x 2.5" resolution V6 TMI (left panel) and V5 TMI (right panel) 
rain rate estimates versus PR estimates, based upon collocated TMI and PR observations over 
ocean from .Tidy- 2000. Superimposed on the Vi3 TMI rain rates are bounds of the estimated 
mean sampling error of TMI (dashed lines, see text for description). 

Fig. 10. Comparisons of V6 TMI and dual-Doppler-radar study (DDS) heating profiles for two 
selected TRMM overpasses of Kwajalein Atoll. Shown in the left column are plan views of 
surface rain rates from the Doppler radar measurements. In the right column are vertical profiles 
of Q1-G &om V6 Th47 (solid line), overlaid on plots of estimated Ql fiom DDS (various dashed 
lines) for different assumed bias errors, ranging fiom 0 - 30%. Data shown in (a) correspond to 
the TRMM overpass at approximately 10 UTC on 15 August 1999, while those in (b) correspond 
to the overpass at 19 UTC on 29 July 1999. 

Fig. 11. Time series of NESA-averaged surface rain rate, V6 TMI Q&R, V6 TMI Ql, and 
rawinsonde analysis of Ql over the period 15 May - 20 June, 1998, during SCSMEX. Surface 
rain rates are derived fiom both V6 TMI and the rawinsonde Qz budget. A 3-day running mean 
filter is applied to all data in the time series. Heating profile time series are contoured at -1, 0, 
1,2,4, and 8 O K  day-'. 

Fig. 12. Mean V6 TMI el-& (solid line), V6 TMI QI (dashed line), and rawinsonde analysis QI 
(dotted line) profiles for the period 15 May - 20 June, 1998, over the SCSMEX NESA. 
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Surface Rain Rate from the Kwajalein Radar 
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Popular Summary 

Precipitation and Latent Heating Distributions 
fi-om Saiellite Passive Microwave Radiometry 

Part I: Method and Uncertainties, and 
Part IT: Evaluation of Estimates Using Independent Data 

A basic process in clouds is the transformation of water in the vapor phase to the 
liquid or solid phase. This process produces not only precipitation (rain or snow) but also 
latent heat, which is released into the atmosphere as the water molecules go from the 
higher to the lower energy states. A knowledge of the distributions of precipitation over 
the globe is essential for studying the earth's climate and the cycling of water through the 
earth-atmosphere system. The distributions of latent heating tell us how variations in 
buoyancy drive circulations in the atmosphere and how the sun's energy (which is 
consumed in the evaporation of surface moisture) is redistributed by the atmosphere to 
regions of more intense precipitation (and thus more intense latent heating). 

In Part I of this study, an improved method for estimating precipitation and latent 
heating distributions from satellhe-borne passive microwave radiometer measurements is 
described. A key feature of this method are the improved models of clouds and 
precipitation that are wed to create a kind of reference "library" of possible solutions that 
the method can draw upon. If simulated microwave radiances associated with a 
particular cloud/precipitation model in the library are consistent with radiances actually 
observed by the satellite microwave radiometer, then it is assumed that that particular 
model is a likely solution. The models of cloud and precipitation are not perfect, 
however: errors in the models can result in errors in inferred precipitation or latent 
heating from the estimation method. In the current study, the physics of precipitating ice 
particles in the ~llodels is imprcved to remove a sigrLificmt source of error b~ the modeled 
clouds. Another important advance is the way convective and stratiform precipitation 
areas are separated by the estimation method. Convective regions are associated with 
intense rainfall and strong upward and downward air motions in the precipitating clouds, 
while stratiform rain is gentle and widespread, and the associated air motions are 
relatively we& By initially classlfying a given region as convective or stratiform based 
upon the microwave radiometer observations, a more specific precipitation or latent 
heating estimate can be made. An improved technique for separating convective and 
stratiform regions-using the horizontal variation of observed microwaves and their 
polarization is employed in the revised estimation method. 

The improved method is scrutinized to determine what levels of error can be 
expected in estimated precipiktion and latent heating. If rain rzte estinates are averaged 
over 0.5" x 0.5" boxes, their errors are expected to be about 50% for a 1 mm per hour rain 
rate but decrease to 20% at 14 mm per hour. If the rain rate estimates are accumulated in 
2.5" x 2.5" boxes and then averaged over 1 month, the anticipated errors in the resulting 
monthly rain rates can be up to 35% for moderate rain rates. The primary source of error' 
in the monthly-average rain estimates is the limited sampling, about 1 per day, by the 


